skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eichinger, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on R \mathbb {R} and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for ∞ \infty . We extend aspects of this theory in the setting of rational functions with poles on R ¯ = R ∪ { ∞ } \overline {\mathbb {R}} = \mathbb {R} \cup \{\infty \} , obtaining a formulation which allows multiple poles and proving an invariance with respect to R ¯ \overline {\mathbb {R}} -preserving Möbius transformations. We obtain a characterization of Stahl–Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap sets. 
    more » « less